Abstract

The implementation of technique for full structural optimizations of complex periodic systems in the DFT-PAW package VASP, including the volume and shape of the unit cell and the internal coordinates of the atoms, together with a correction that allows an appropriate modeling of London dispersion forces, as given by the DFT-D2 approach of Grimme [Grimme, S. J. Comp. Chem. 2006, 27, 1787], is reported. Dispersion corrections are calculated not only for the forces acting on the atoms, but also for the stresses on the unit cell. This permits a simultaneous optimization of all degrees of freedom. Benchmark results on a series of prototype systems are presented and compared to results obtained by other methods and experimental data. It is demonstrated that the computationally inexpensive DFT-D2 scheme yields reasonable predictions for the structure, bulk moduli, and cohesive energies of weakly bonded materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.