Abstract

Photoageing resulting from long term exposure of the skin to UV light can be minimized by scavenging the reactive photochemical intermediates with antioxidants. For effective photoprotection, the antioxidant must overcome the barrier properties of the skin and reach the target site in significant amounts. The present study aims to improve the skin penetration of caffeic acid, a very effective free radical scavenger, by encapsulating in liposomes. Caffeic acid loaded liposomes prepared using the reverse phase evaporation technique showed 70% encapsulation efficiency and size around 100 nm with zeta potential of −55 mV.In vitrodiffusion through a dialysis membrane enabled 70% release of encapsulated caffeic acid within 7 h, whereas 95% of free caffeic acid diffused within 4 h in PBS solution (pH 7.4). Liposomal caffeic acid permeation through pig skin epidermis in a Franz cell apparatus was 45 % during 7 h. In contrast, free caffeic acid was almost nonpermeable (<5%) to pig skin during this time. The DPPH assay indicated that skin penetration did not destroy the antioxidant activity of liposomal caffeic acid or free caffeic acid. In conclusion, we confirm that liposomal caffeic acid may be successfully employed as an effective photoprotective agent against UV mediated skin damage.

Highlights

  • The exposure of skin to solar ultraviolet (UV) radiation causes skin damage resulting in both skin lesions and acceleration of skin ageing [1]

  • The UV radiation causes the depletion of natural cellular antioxidants such as vitamins A, C, and E, squalene, and coenzyme Q-10 resulting in the accumulation of reactive oxygen species (ROS): hydrogen peroxide, superoxide anion, singlet oxygen, hydroxyl radicals, and nitric oxide (NO) [3]

  • Caffeic acid loaded liposomes were characterized for their size, zeta potential, encapsulation efficiency, and morphology

Read more

Summary

Introduction

The exposure of skin to solar ultraviolet (UV) radiation causes skin damage resulting in both skin lesions and acceleration of skin ageing [1]. The UV radiation causes the depletion of natural cellular antioxidants such as vitamins A, C, and E, squalene, and coenzyme Q-10 resulting in the accumulation of reactive oxygen species (ROS): hydrogen peroxide, superoxide anion, singlet oxygen, hydroxyl radicals, and nitric oxide (NO) [3]. This imbalance between the production of ROS and reduction of antioxidant defences leads to cellular damage which disrupts the structural integrity of the skin thereby accelerating the ageing process [2].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.