Abstract

The paper deals with the self-ignition and combustion of hydrogen jets in a high-speed transverse flow of hot vitiated air in a duct. The Improved Delayed Detached Eddy Simulation (IDDES) approach based on the Shear Stress Transport (SST) model is used, which in this paper is applied to a turbulent reacting flow with finite rate chemical reactions. An original Adaptive Implicit Scheme for unsteady simulations of turbulent flows with combustion, which was successfully used in IDDES simulation, is described. The simulation results are compared with the experimental database obtained at the LAERTE experimental workbench of the ONERA—The French Aerospace Laboratory. Comparison of IDDES with experimental results shows a strong sensitivity of the simulation results to the surface roughness and temperature of the duct walls. The results of IDDES modeling are in good agreement with experimental pressure distributions along the wall and with the results of videoregistration of the excited radical chemiluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call