Abstract

Summary This paper is concerned with the robust stability problem for uncertain discrete-time systems with interval time-varying delays and randomly occurring parameter uncertainties. By construction of a suitable Lyapunov–Krasovskii functional and utilization of new zero equalities with delay-partitioning approach, improved delay-dependent criteria for the robust stability of the systems are derived in terms of linear matrix inequalities for guaranteeing the asymptotic stability of the concerned systems. The effectiveness and reduction of conservatism of the derived results are demonstrated by three numerical examples. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.