Abstract
Encoding system plays a significant role in quantum key distribution (QKD). However, the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices. To alleviate the influence of misalignments, a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD. In this work, we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources. It only requires the source states are prepared in a two-dimensional Hilbert space, and can thus reduce the complexity of practical realizations. Moreover, we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method, and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.