Abstract
Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following curve-fitting problem over a field F: Given n points {(x/sub i/.y/sub i/)}/sub i=1//sup n/, x/sub i/,y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/{1....,n}. We give an algorithm that solves this problem for e 1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n-d-) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of Shokrollahi and Wasserman (1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.