Abstract

We study the classical expander codes, introduced by Sipser and Spielman [1]. Given any constants 0 < α, ε < 1/2, and an arbitrary bipartite graph with <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> vertices on the left, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</i> < <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> vertices on the right, and left degree <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> such that any left subset <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> of size at most α <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> has at least (1–ε)| <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> | <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly αN/2ε. This is strictly better than the best known previous result of 2(1 – ε )α <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> [2, 3] whenever ε < 1/2, and improves the previous result significantly when ε is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever ε < 1/4. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call