Abstract
In this article, an improved dc-link voltage regulation strategy is proposed for grid-connected converters applied in dc microgrids. For the inner loop of the grid-connected converter, a voltage modulated direct power control is employed to obtain two second-order linear time-invariant systems, which guarantees that the closed-loop system is globally exponentially stable. For the outer loop, a sliding mode control strategy with a load current sensor is employed to maintain a constant dc-link voltage even in the presence of constant power loads at the dc-side, which adversely affect the system stability. Furthermore, an observer for the dc-link current is designed to remove the dc current sensor at the same time improving the reliability and decreasing the cost. From both simulation and experimental results obtained from a 15-kVA prototype setup, the proposed method is demonstrated to improve the transient performance of the system and has robustness properties to handle parameter mismatches compared with the input-output linearization method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.