Abstract
To enhance the direct current (DC) dielectric properties of cross-linked polyethylene (XLPE) for high-voltage (HV) cable insulation, the polyethylene molecular chain is modified by grafting bismaleimide ethane (BMIE), which creates carrier deep traps within the polymer material. Compared to the traditional modified molecule maleic anhydride (MAH), BMIE has a significantly higher boiling point than the production temperature of XLPE. Additionally, it does not release bubbles during the production process and, thus, preserves the dielectric properties. It was proved by infrared spectroscopy and a gel content test that BMIE was successfully grafted onto the polyethylene molecular chain and had no effect on the crosslinking degree of the polymer while reducing the amount of crosslinker, thereby reducing the influence of the by-products of the decomposition of dicumene peroxide (DCP) on the electrical resistance of polymers. The analysis of DC breakdown field strength, current density, and space charge distribution at various temperatures demonstrates that grafting BMIE can greatly enhance the dielectric properties of insulation. Polar groups in the BMIE molecule create deep trap energy levels in XLPE-g-BMIE, and these trap energy levels contribute to the formation of a charged layer near the electrode, which is shielded by Coulomb potential. As a result, the charge injection barrier increases. Additionally, the presence of these polar groups reduces the mobility of charge carriers through trap-carrier scattering, effectively suppressing the accumulation of space charge within the material. First-principle calculations also confirm that bound states can be introduced as carrier traps by grafting BMIE onto polyethylene molecules. The agreement between experimental results and simulation calculations indicates that grafting BMIE to enhance the dielectric properties of polyethylene is a new and feasible research direction in the exploitation of materials for HVDC cables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.