Abstract
Novel control strategies to reduce the heating and cooling energy consumption of buildings and districts are constantly being developed. Control on higher system levels, for example demand side management, usually requires forecasts for the future energy demand of buildings or entire districts. Such forecasts can be done with Artificial Neural Networks. However, the prediction performance of Artificial Neural Networks suffers from high variance. This means that two parameter-wise identical networks fitted to the same training data set perform differently well in forecasting the testing set. Here, we use two correction methods, one based on the forecasting error autocorrelation, and one based on online learning, to obtain reliable forecasting models. The approach is tested in the frame of day-ahead sub-hourly heating demand forecasting in a case study of a complex building, which has properties of a district heating system. It is demonstrated that the methods significantly reduce variance in prediction performance and also increase average prediction accuracy. When compared to other grey-box and black-box forecasting models, the approach performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.