Abstract

To improve the charge/discharge cycle stability of a nanostructured manganese dioxide electrode for supercapacitor applications, a series of nano-MnO2/carbon nanotube (CNT) hybrid electrode materials with different mass fractions of CNTs were prepared. The materials were prepared using a room-temperature solid-grinding reaction between Mn(OAc)•24H2O and NH4HCO3 in the presence of CNTs to obtain a precursor. This was followed by calcination and an acid-treatment process and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface analysis. XRD results indicated that the MnO2 in the composites was nanostructured γ-MnO2. Electrochemical performance of the MnO2/CNT composite electrodes in 1 mol•L^(-1) LiOH alkaline aqueous electrolyte was studied and compared to a pure nano-MnO2 electrode without CNTs. The MnO2/CNT composite electrodes with 10% or 20% (w, mass fraction) CNTs showed far superior cycle stability than the pure MnO2 electrode. The MnO2/CNT composite electrode with 10% CNTs exhibited good cycling stability and also a high specific capacitance of 200 F•g^(-1) at a high charge/discharge current rate of 1000 mA•g^(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.