Abstract

Aluminum alloy LF 21 has a strong ability to reflect electromagnetic waves. LF 21 waveguide slit array structure is widely used in waveguide radar antenna. The stiffness of the slit array structure is relatively weak. So, the structure is prone to deformation under the cutting force in the conventional milling process. Micro-milling technology can realize high-precision machining of mesoscale parts/structures and is a potential effective machining technology for the waveguide slit array structure. However, the diameter of the micro-milling cutter is small, and the feed per tooth is comparable to the arc radius of the cutting edge, so the micro-milling cutter is prone to wear. In addition, the effects of elastic recovery of material, the minimum cutting thickness and friction of cutting dead zone on micro-milling force cannot be ignored. A simulation model of micro-milling aluminum alloy LF 21 processes based on DEFORM 3D is built by combining the theory of cutting and the technology of process simulation. Prediction of tool wear is achieved. The quantitative relationship between the arc radius of the cutting edge and tool wear is clarified for the first time. The authors built an improved cutting force model in micro-milling LF 21 considering tool wear and cutter runout with the minimum cutting thickness as the boundary. The validity of the built micro-milling force model is verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.