Abstract

Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRI represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call