Abstract

Stand counts is one of the most common ways farmers assess plant growth conditions and management practices throughout the season. The conventional method for early-season stand count is through manual inspection, which is time-consuming, laborious, and spatially limited in scope. In recent years, Unmanned Aerial Vehicles (UAV) based remote sensing has been widely used in agriculture to provide low-altitude, high spatial resolution imagery to assist decision making. In this project, we designed a system that uses geometric descriptor information with deep neural networks to determine early-season maize stands from relatively low spatial resolution (10 to 25 mm) aerial data, which covers a relatively large area (10 to 25 hectares). Instead of detecting individual crops in a row, we process the entire row at one time, which significantly reduces the requirements for the clarity of the crops. Besides, our new MaxArea Mask Scoring RCNN algorithm could segment crop-rows out in each patch image, regardless of the terrain conditions. The robustness of our scheme was tested on data collected at two different fields in different years. The accuracy of the estimated emergence rate reached up to 95.8%. Due to the high processing speed of the system, it has the potential for real-time applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.