Abstract

In massive MIMO (Multiple Input Multiple Output) mm (millimetre) wave system, the channel conditions are measured and analysed for a better placement of reflectors or antennas. In order to increase the coverage area and to reduce interference among users factors such as pathloss and power delay profile are extracted from the Channel Impulse Response (CIR) i.e. from the received signal with respect to transmitter and receiver channel propagation conditions. In a distributed indoor massive MIMO mm-wave system, pathloss and power delay profile are evaluated for Line of Sight (LoS) and Non-Line of Sight (NLoS) environments at frequencies such as 28 and 39 GHz. Based on these factors, a dataset is constructed for 28 GHz. Algorithms such as Support Vector Machine, KNN and Fine Tree are considered. These algorithms are trained with a set of datasets and are tested for performance metrics such as Mean Absolute Error, Correlation Coefficient, Root Mean Squared Error, Relative Absolute Error, Root Relative Squared Error are evaluated. Simulation results show that an accuracy of 94% and 95% using support vector machine, 93.8% and 94.5% accuracy using KNN and an accuracy of 93.2% and 93.8% using fine tree algorithm for pathloss and power delay profile respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.