Abstract

We observationally examine cosmological models based on primordial power spectra with quantized wavevectors. Introducing a linearly quantized power spectrum with $k_0=3.225\times10^{-4}\mathrm{Mpc}^{-1}$ and spacing $\Delta k = 2.257 \times 10^{-4} \mathrm{Mpc}^{-1}$ provides a better fit to the Planck 2018 observations than the concordance baseline, with $\Delta \chi^2 = -8.55$. Extending the results of Lasenby et al [1], we show that the requirement for perturbations to remain finite beyond the future conformal boundary in a universe containing dark matter and a cosmological constant results in a linearly quantized primordial power spectrum. It is found that the infrared cutoffs for this future conformal boundary quantized cosmology do not provide cosmic microwave background power spectra compatible with observations, but future theories may predict more observationally consistent quantized spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call