Abstract

In recent years, several fast solvers for the solution of the Lippmann–Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by penetrable inhomogeneous obstacles, have been proposed. While many of these fast methodologies exhibit rapid convergence for smoothly varying scattering configurations, the rate for most of them reduce to either linear or quadratic when material properties are allowed to jump across the interface. A notable exception to this is a recently introduced Nyström scheme (Anand et al., 2016 [22]) that utilizes a specialized quadrature in the boundary region for a high-order treatment of the material interface. In this text, we present a solution framework that relies on the specialized boundary integrator to enhance the convergence rate of other fast, low order methodologies without adding to their computational complexity of O(Nlog⁡N) for an N-point discretization. In particular, to demonstrate the efficacy of the proposed framework, we explain its implementation to enhance the order to convergence of two schemes, one introduced by Duan and Rokhlin (2009) [13] that is based on a pre-corrected trapezoidal rule while the other by Bruno and Hyde (2004) [12] which relies on a suitable decomposition of the Green's function via Addition theorem. In addition to a detailed description of these methodologies, we also present a comparative performance study of the improved versions of these two and the Nyström solver in Anand et al. (2016) [22] through a wide range of numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call