Abstract

Simple modifications to the analysis used in the Kuhn, Lin, & Loranz flat-field CCD calibration method yield significant improvements in both speed and accuracy. In this method, multiple exposures are taken of a time-independent signal at different spatial positions. The flat field is then expressed in the form of a Jacobi relaxation solution to Poisson's equation. By applying the technique of simultaneous overrelaxation, we have improved the convergence rate to require approximately the square root of the number of iterations () needed by the Jacobi method. For large arrays, where r is correspondingly large, this improvement is significant. Furthermore, we have improved the accuracy by extending the method to account for fractional pixel shifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.