Abstract
From time to time, a series of unpredictable and conflicting contingencies can lead to angular instability of the power system and even blackouts if not adequately handled by an out-of-step (OOS) protection system. The key contribution of this research work, to the theory of out-of-step protection, is the identification and isolation after a given disruption of many unstable swings. This paper presents a proposed method to avoid false operation for distance function by out-of-step blocking to improve the system stability by using optimally placed PMUs for the fast detection of system analogue quantities. The studies were performed on a modified Eskom transmission network in the Western Cape with 765 kV and 400 kV voltage levels. The aim is to investigate the IEC 61850-90-5 standard for predictive dynamic stability maintaining systems using PMUs for out-of-step conditions of synchronous generators. The power system modelling and simulation are performed in the RSCAD-FX for the proposed multi-area power system network. An experimental lab-scale implementation is built to test the proposed out-of-step algorithm in a real-time digital simulator. Software-based PMU is incorporated to test and validate the IEC 61850-90-5 standard sampled values. Simulation and experimental results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.