Abstract

It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality.

Highlights

  • With advances in power electronics and microprocessors, power electronics technology has widely used for many applications

  • To cope with these problems, many control methods have been proposed by many academics and researchers, namely fuzzy logic controllers (FLC), robust H∞ controller, linear quadratic regulator (LQR), sliding mode control (SMC) and predictive control (PC)

  • The emphasis was on the analysis, design and implementation of the proposed control scheme in MATLAB/Simulink environment

Read more

Summary

Background

With advances in power electronics and microprocessors, power electronics technology has widely used for many applications. It is known that PI controllers have many disadvantages such as slow response, large overshoots and oscillations (Cortes et al 2008; Blasko and Kaura 1997) To cope with these problems, many control methods have been proposed by many academics and researchers, namely fuzzy logic controllers (FLC), robust H∞ controller, linear quadratic regulator (LQR), sliding mode control (SMC) and predictive control (PC). Mathematical model of PWM rectifier The three-phase PWM rectifiers are widely used in a wide diversity of applications in recent years These rectifiers have many advantages such as bi-directional power flow, low harmonic distortion of line current, unity power factor, control of DC bus voltage (Blasko and Kaura 1997; Kazmierkowski et al 2002).

Ls duc dt
RL ln
PI CONTROLLER
HC idis
Active and Reactive Power f
Harmonic order
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.