Abstract

This paper investigates the problem of Secure Multi-party Batch Matrix Multiplication (SMBMM), where a user aims to compute the pairwise products <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {A}\divideontimes \mathbf {B}\triangleq (\mathbf {A}^{(1)}\mathbf {B}^{(1)},\ldots,\mathbf {A}^{(M)}\mathbf {B}^{(M)})$ </tex-math></inline-formula> of two batch of massive matrices <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {A}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {B}$ </tex-math></inline-formula> that are generated from two sources, through <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> honest but curious servers which share some common randomness. The matrices <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {A}$ </tex-math></inline-formula> (resp. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {B}$ </tex-math></inline-formula> ) must be kept secure from any subset of up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X_{\mathbf {A}}$ </tex-math></inline-formula> (resp. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X_{\mathbf {B}}$ </tex-math></inline-formula> ) servers even if they collude, and the user must not obtain any information about <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(\mathbf {A},\mathbf {B})$ </tex-math></inline-formula> beyond the products <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbf {A}\divideontimes \mathbf {B}$ </tex-math></inline-formula> . A novel computation strategy for single secure matrix multiplication problem (i.e., the case <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$M=1$ </tex-math></inline-formula> ) is first proposed, and then is generalized to the strategy for SMBMM by means of cross subspace alignment. The SMBMM strategy focuses on the tradeoff between recovery threshold (the number of successful computing servers that the user needs to wait for), system cost (upload cost, the amount of common randomness, and download cost) and system complexity (encoding, computing, and decoding complexities). Notably, compared with the known result by Chen <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> , the strategy for the degraded case <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X= X_{\mathbf {A}}=X_{\mathbf {B}}$ </tex-math></inline-formula> achieves better recovery threshold, amount of common randomness, download cost and decoding complexity when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> is less than some parameter threshold, while the performance with respect to other measures remain identical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call