Abstract
AbstractThe magnitude and distribution of China's terrestrial carbon sink remain uncertain due to insufficient observational constraints; satellite column‐average dry‐air mole fraction carbon dioxide (XCO2) retrievals may fill some of this gap. Here, we estimate China's carbon sink using atmospheric inversions of the Orbiting Carbon Observatory 2 (OCO‐2) XCO2 retrievals within different platforms, including the Global Carbon Assimilation System (GCAS) v2, the Copernicus Atmosphere Monitoring Service, and the OCO‐2 Model Inter‐comparison Project (MIP). We find that they consistently place the largest net biome production (NBP) in the south on an annual basis compared to the northeast and other main agricultural areas during peak growing season, coinciding well with the distribution of forests and crops, respectively. Moreover, the mean seasonal cycle amplitude of NBP in OCO‐2 inversions is obviously larger than that of biosphere model simulations and slightly greater than surface CO2 inversions. More importantly, the mean seasonal cycle of the OCO‐2 inversions is well constrained in the temperate, tropical, and subtropical monsoon climate zones, with better inter‐model consistency at a sub‐regional scale compared to in situ inversions and biosphere model simulations. In addition, the OCO‐2 inversions estimate the mean annual NBP in China for 2015–2019 to be between 0.34 (GCASv2) and 0.47 ± 0.16 PgC/yr (median ± std; OCO‐2 v10 MIP), and indicate the impacts of climate extremes (e.g., the 2019 drought) on the interannual variations of NBP. Our results suggest that assimilating OCO‐2 XCO2 retrievals is crucial for improving our understanding of China's terrestrial carbon sink regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.