Abstract

Uncertainty in desert dust composition poses a big challenge to understanding Earth’s climate across different epochs. Of particular concern is hematite, an iron-oxide mineral dominating the solar absorption by dust particles, for which current estimates of absorption capacity vary by over two orders of magnitude. Here, we show that laboratory measurements of dust composition, absorption, and scattering provide valuable constraints on the absorption potential of hematite, substantially narrowing its range of plausible values. The success of this constraint is supported by results from an atmospheric transport model compared with station-based measurements. Additionally, we identify substantial bias in simulating hematite abundance in dust aerosols with current soil mineralogy descriptions, underscoring the necessity for improved data sources. Encouragingly, the next-generation imaging spectroscopy remote sensing data hold promise for capturing the spatial variability of hematite. These insights have implications for enhancing dust modeling, thus contributing to efforts in climate change mitigation and adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call