Abstract

Abstract The luminosity distance measurement of GW170817 derived from gravitational-wave analysis in Abbott et al. (2017a, hereafter A17:H0) is highly correlated with the measured inclination of the NS–NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broadband X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t < 40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy E k ∼ 1048 −3 × 1050 erg propagating into an environment with density n ∼ 10−2–10−4 cm−3, with preference for wider jets (opening angle θ j = 15°). For these jets, our modeling indicates an off-axis angle θ obs ∼ 25°–50°. We combine our constraints on θ obs with the joint distance–inclination constraint from LIGO. Using the same ∼170 km s−1 peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of km s−1 Mpc−1, which is higher than the value of km s−1 Mpc−1 found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km s−1 derived from previous work, we find km s−1 Mpc−1 for H 0 from this system. This is in modestly better agreement with the local distance ladder than the Planck cosmic microwave background, though such a significant discrimination will require ∼50 such events. Measurements at t > 100 days of the X-ray and radio emission will lead to tighter constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.