Abstract

Predictive Functional Control is a simple alternative to the traditional PID controller which has the capability to handle process constraints more systematically. Nevertheless, the most basic form of PFC has suffered from ill-posed prediction due to its simplicity in formulation and assumption of constant future input dynamics. Although some constraints can be satisfied, nevertheless the performance may be very conservative due to this issue. The main objective of this paper is to improve the constrained performance of a PFC controller with a minimum modification of the existing formulation. Specifically, a novel constraint handling approach for PFC is proposed based on an implied closed-loop prediction. Instead of assuming a constant input as deployed in the conventional open-loop prediction, the implied closed-loop input dynamics are utilised to detect future constraint violations. In addition, a future perturbation is introduced into the prediction structure as an extra degree of freedom for satisfying the constraints. Two simulation results confirm that the proposed approach gives far less conservative constraint handling and thus better control performance compared to the nominal PFC. Furthermore, this novel implementation also alleviates the well-known tuning difficulties and prediction inconsistency issues that are associated with conventional PFC when handling constraints. ABSTRAK: Kawalan Kefungsian Ramalan adalah alternatif mudah kepada kawalan tradisional PID yang mempunyai kekangan keupayaan bagi mengawal proses secara lebih tersusun. Namun, keadaan paling asas pada kesan PFC adalah daripada ramalan tak teraju-rapi yang disebabkan oleh formula ringkas dan anggapan dinamik input yang sama bagi masa depan. Walau kekangan ini dapat diatasi, namun prestasi akan berubah secara konservatif disebabkan oleh isu ini. Objektif utama kajian ini adalah bagi membaiki kekangan prestasi kawalan PFC dengan modifikasi minimum formula yang ada. Secara spesifik, pendekatan nobel kawalan PFC dicadangkan berdasarkan ramalan lingkaran-tertutup. Selain anggapan input tetap seperti yang dilakukan pada ramalan lingkaran-terbuka yang konservatif, dinamik input yang dibuat pada lingkaran-tertutup telah digunakan bagi mengesan kekangan masa depan yang bertentangan. Tambahan, gangguan yang bakal berlaku pada masa depan telah diperkenalkan ke dalam struktur ramalan sebagai tambahan darjah pada kebebasan bagi mengatasi kekangan. Dua dapatan simulasi kajian menyetujui pendekatan yang dicadangkan dan menyebabkan sangat kurang kekangan pengendalian pada sistem konservatif, oleh itu kawalan yang lebih bagus pada prestasi berbanding pada PFC nominal. Selain itu, pendekatan nobel ini juga menghilangkan kesukaran pelarasan yang dikenali ramai dan ramalan isu tidak konsisten yang terdapat pada PFC konvensional apabila mengendali kekangan.

Highlights

  • Advances in the industrial revolution triggered the need for advanced control methods that can work within a constrained environment

  • The more systematic, but far more expensive alternative, is to implement Model Predictive Control (MPC); this approach utilises predictions explicitly and optimises the expected behaviour by minimising a quadratic cost function subjected to predictions satisfying process constraints [2, 3]

  • For clarity of presentation, the obtained simulation results will not be compared with other types of controllers as that is not the main contribution of this paper and those comparisons are already well known in the existing literature

Read more

Summary

Introduction

Advances in the industrial revolution triggered the need for advanced control methods that can work within a constrained environment. Constraints can be classified into two categories: i) a hard constraint refers to a physical limitation of process hardware which typically is in terms of input and output rates and ii) a soft constraint refers to a state or output limit which may be violated to some extent when required or perhaps when unavoidable Satisfying all of these constraints can provide several benefits such as lower maintenance costs, maximisation of profits, and a safer control environment [1]. The second core principle in PFC is to force the system prediction, that is yp(k + n|k), to match the target n samples into the future, where n is representing the coincidence horizon (second tuning parameter) [5]. The two tuning parameters or user choices are the desired closed-loop pole, λ, and the coincidence horizon, n

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call