Abstract

The majority of radiation absorbed dose estimates for radioimmunotherapy (RIT) with I-131 labeled antibodies have been calculated based on in vivo quantitation of activity using the conjugate view approach with planar Anger camera images. Scatter and septal penetration events contributed by a small fraction of high-energy photons emitted by I-131 with an energy exceeding 600 KeV lead to a significant degradation of I-131 images acquired with an Anger camera, which blurs the images of uptake sites and complicates the definition of background regions. The objective of this study was to evaluate a triple energy window (TEW) subtraction method that has been used to remove these interfering events from I-131 images. In the method, a primary photopeak image for I-131 is obtained after sequential subtraction of septal penetration and scatter events by using scatter multipliers derived from a photopeak window and two adjacent scatter window images. Qualitative improvement in image contrast was demonstrated with this technique, together with more accurate and reproducible quantitation for I-131 in the organs of an abdominal phantom. This TEW scatter subtraction method can be used to provide more precise dosimetry estimates for radionuclide therapy and RIT with I-131.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.