Abstract

NdFeO3 is an important candidate material for gas sensors and intermediate-temperature solid oxide fuel cells (IT-SOFC). However, its low conductivity prohibits its applications. In this study, we report that the doping of Ca by partially replacing Nd can effectively increase its conductivity. Through the electronic structure analysis of Nd(1-x)Ca(x)FeO3 (x = 0.00, 0.25, 0.50, 0.75 or 1.00) based on the first-principles density functional theory calculations, it is found that the hole states introduced by Ca substitution appear just above the Fermi level, which implies a high mobility of electrons/holes along the Fe-O-Fe bonding network. Specifically, it becomes easier to form O vacancies after Ca doping. Since the diffusion of O anions occurs through a vacancy hopping mechanism, the ion conductivity is also improved. These findings help us to gain an in-depth understanding of the colossally increased conductivity of Ca doped NdFeO3 and turn the electronic conduction for its practical application in gas sensors and IT-SOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.