Abstract

Environmental hazards caused by chloramphenicol has attained special attention. Fast, accurate and reliable detection of chloramphenicol in foodstuffs and water samples is of utmost importance. Herein, we developed a g-C3N4/MnWO4 composite for the selective and sensitive detection of chloramphenicol. Successful fabrication of g-C3N4/MnWO4 composite was verified by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD) and x-ray photo electron spectroscopy (XPS) techniques. Electrochemical characteristics were evaluated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The g-C3N4/MnWO4 modified glassy carbon electrode has shown the highest electrocatalytic activity towards chloramphenicol with a decreased reduction potential of -0.547 V and increased cathodic peak current. The developed sensor has shown excellent performance for the detection of chloramphenicol with a sensitivity of 0.9986 μA nM−1 cm−2 and LOD of 1.03 nM in a broad linear range of 4.0–71 nM. In addition, the fabricated sensor has achieved anti-interference ability, good stability, excellent repeatability and remarkable reproducibility for the detection of chloramphenicol. The fabricated sensor applied for the determination of chloramphenicol in milk, human blood serum and sewage samples, in which significant and satisfactory results were achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.