Abstract

The earliest-pseudo-deadline-first ( EPDF) Pfair algorithm is more efficient than other known Pfair scheduling algorithms, but is not optimal for scheduling recurrent real-time task systems on more than two identical processors. Although not optimal, EPDF may be preferable for real-time systems instantiated on less-powerful platforms, those with soft timing constraints, or those whose task composition can change at run-time. In prior work, Srinivasan and Anderson established a sufficient per-task utilization restriction for ensuring a tardiness of at most q quanta, where q ⩾ 1 , under EPDF. They also conjectured that under this algorithm, a tardiness bound of one quantum applies to task systems that are not subject to any restriction other than the obvious restrictions, namely, that the total system utilization not exceed the available processing capacity and per-task utilizations not exceed 1.0. In this paper, we present counterexamples that show that their conjecture is false and present sufficient per-task utilization restrictions that are more liberal than theirs. For ensuring a tardiness bound of one quantum, our restriction presents an improvement of 50% over the previous one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.