Abstract

Cryoprotectant agents (CPAs) are added in freezing extenders to prevent intracellular ice crystal formation. However, it has been reported that high dose of CPAs confer toxicity on spermatozoa. Recently, the reduction of intracellular water by a high osmolality solution has also resulted in the suppression of ice crystal formation in spermatozoa, suggesting that the optimal combination of glycerol concentration and freezing extender osmolality could contribute to the development of effective sperm cryopreservation techniques. In this study, we investigated the motility, membrane and acrosomal integrity of frozen-thawed boar spermatozoa treated with freezing extender (NSF) of varying osmolalities (300, 400, 500 mOsm/kg) and final concentrations of glycerol (0.5, 1, 2, 3%). The spermatozoa that were treated at 400 mOsm/kg and 2% glycerol showed significantly higher rates of motility and membrane integrity compared with those in other treatment groups. In addition, the conception and implantation rates of swine artificially inseminated with spermatozoa frozen by the novel freezing extender (conception; 79%, implantation; 57.5%) were significantly higher than those of frozen-thawed spermatozoa treated in the conventional NSF (300 mOsm/kg, 3% glycerol) (conception; 29%, implantation; 33.8%). From these results, we concluded that the novel hyperosmotic (400 mOsm/kg) and low-glycerol (final concentration 2%) freezing extender is beneficial for the cryopreservation of boar spermatozoa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call