Abstract
All-pass filter design can be generally achieved by solving a system of linear equations. The associated matrices involved in the set of linear equations can be further formulated as a Toeplitz-plus-Hankel form such that a matrix inversion is avoided. Consequently, the optimal filter coefficients can be solved by using computationally efficient Levinson algorithms or Cholesky decomposition technique. In this paper, based on trigonometric identities and sampling the frequency band of interest uniformly, the authors proposed closed-form expressions to compute the elements of the Toeplitz-plus-Hankel matrix required in the least-squares design of IIR all-pass filters. Simulation results confirm that the proposed method achieves good performance as well as effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.