Abstract

In this paper, we describe improved algorithms to compute Janet and Pommaret bases. To this end, based on the method proposed by Moller et al. [20], we present a more efficient variant of Gerdt’s algorithm (than the algorithm presented in [16]) to compute minimal involutive bases. Furthermore, by using an involutive version of the Hilbert driven technique along with the new variant of Gerdt’s algorithm, we modify the algorithm given in [23] to compute a linear change of coordinates for a given homogeneous ideal so that the new ideal (after performing this change) possesses a finite Pommaret basis. All the proposed algorithms have been implemented in Maple and their efficiency is discussed via a set of benchmark polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.