Abstract

We present an optimized method for compound-specific stable carbon isotope (delta(13)C) analysis of n-alkanes. For sample preparation, the traditionally used Soxhlet extraction was replaced by accelerated solvent extraction (ASE). delta(13)C values of individual n-alkanes--measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)--were first drift-corrected with regularly discharged pure CO(2) pulses as reference gas and, secondly, corrected for the amount dependence of the delta(13)C values by co-analyzing standards with varying analyte concentrations. Finally, the delta(13)C values were calibrated against two internal standards. The improved method was applied to selected sediment samples from a palaeoenvironmental study in subtropical NE Argentina. The measured delta(13)C values of all long-chain n-alkanes (nC(27), nC(29), nC(31) and nC(33)), representing biomarkers for terrestrial plants, correlate significantly with the delta(13)C of bulk organic matter (delta(13)C(TOC)). The latter is hence corroborated as a proxy for C3-C4 vegetation changes. Furthermore, the delta(13)C variations reveal higher amplitudes for nC(31) and nC(33) than for nC(27) and nC(29), indicating that the former n-alkanes mainly derive from C3 and/or C4 grasses, whereas the latter homologues mainly derive from C3 plants (trees and shrubs). Except for the lowermost part of the sediment core, the delta(13)C values of the mid-chain alkanes nC(23) and nC(25) do not reflect the terrestrial delta(13)C pattern, thus indicating that they are probably mainly of lacustrine origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call