Abstract
Background/Objectives: Collagen-agarose hydrogel blends currently used in tracheal graft bioengineering contain relatively high concentrations of collagen to withstand mechanical stresses associated with native trachea function (e.g., breathing). Unfortunately, the high collagen content restricts effective cell infiltration into the hydrogel. In this study, we created an improved hydrogel blend with lower concentrations of collagen (<5 mg/mL) and characterized its capacity for fibroblast invasion and angiogenesis. Methods: Four collagen-agarose hydrogel blends were created: 1 mg/mL type 1 collagen (T1C) and 0.25% agarose, 1 mg/mL T1C and 0.125% agarose, 2 mg/mL T1C and 0.25% agarose, and 2 mg/mL T1C and 0.125% agarose. The hydrogel surface was seeded with fibroblasts, while both endothelial cells and fibroblasts (3:1 ratio) were mixed within the hydrogel matrix. We assessed early angiogenesis by observing fibroblast migration and endothelial cell morphology (elongation and branching) at 7 days. In addition, we performed immunostaining for alpha-smooth muscle actin (aSMA) and explored the gene expression of various angiogenic markers (including vascular endothelial growth factor; VEGF). Results: Gels with lower agarose concentrations (0.125%) with 1 or 2 mg/mL T1C were more effective in allowing early attachment and migration of surface-applied fibroblasts compared to gels with higher (0.25%) agarose concentrations. The low-agarose gels also allowed cells to quickly adopt a spread morphology and self-assemble into elongated structures indicative of early angiogenesis, while demonstrating positive immunostaining for aSMA and increased gene expression of VEGF by day 7. Conclusions: Hydrogel blends with collagen and low agarose concentrations may be effective in allowing early cellular infiltration and angiogenesis, making such gels a suitable cell substrate for use in the development of composite bioengineered tracheal grafts. The collagen-agarose hydrogel blend is meant to be cast around a three-dimensional (3D) printed polycaprolactone support structure and wrapped in porcine small intestine submucosa ECM to create an off-the-shelf bioengineered tracheal implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.