Abstract

Self-assembly allows the construction of advanced molecular or supramolecular systems from small building blocks. Host-guest recognition, for its self-selectivity, environmental responsiveness and convenient application to complex molecular devices, plays a significant role in self-assembled systems. During this process, the association constant between the host and guest is an important standard to identify the properties of the systems. In order to prepare mechanically interlocked structures and large supramolecular systems efficiently from small molecules based on a host-guest recognition motif, it is necessary to increase host-guest association constants. Crown ether-based cryptands have been designed and prepared to improve the binding of paraquat derivatives. This feature article aims to describe the design and syntheses of crown ether-based cryptand hosts for paraquat derivatives and the application of the cryptand/paraquat recognition motif in the fabrication of threaded structures, molecular switches and supramolecular polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.