Abstract

In this article, we study compact Mixed-Integer Programming (MIP) models for the Resource-Constrained Project Scheduling Problem (RCPSP). Compared to the classical time-indexed formulation, the size of compact models is strongly polynomial in the number of jobs. In addition to two compact models from the literature, we propose a new compact model. We can show that all three compact models are equivalent by successive linear transformations. For their LP-relaxations, however, we state a full inclusion hierarchy where our new model dominates the previous models in terms of polyhedral strength. Moreover, we reveal a polyhedral relationship to the common time-indexed model. Furthermore, a general class of valid cutting planes for the compact models is introduced and finally all models are evaluated by computational experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.