Abstract
In the terahertz frequency range, the quantum cascade laser (QCL) is a suitable platform for the frequency comb and dual-comb operation. Improved comb performances have been always much in demand. In this work, by employing a symmetric thermal dissipation scheme, we report an improved frequency comb and dual-comb operation of terahertz QCLs. Two configurations of cold fingers, i.e., type A and B with asymmetric and symmetric thermal dissipation schemes, respectively, are investigated here. A finite-element thermal analysis is carried out to study the parametric effects on the thermal management of the terahertz QCL. The modeling reveals that the symmetric thermal dissipation (type B) results in a more uniform thermal conduction and lower maximum temperature in the active region of the laser, compared to the traditional asymmetric thermal dissipation scheme (type A). To verify the simulation, experiments are further performed by measuring laser performance and comb characteristics of terahertz QCLs emitting around 4.2 THz mounted on type A and type B cold fingers. The experimental results show that the symmetric thermal dissipation approach (type B) is effective for improving the comb and dual-comb operation of terahertz QCLs, which can be further widely adopted for spectroscopy, imaging, and near-field applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.