Abstract
The collaboration pursuing method (CPM) is a computationally efficient approach for deterministic multidisciplinary design optimization (MDO). However, it has not been employed to handle problems with uncertainty. Moreover, obtaining actual uncertainty probability distributions is challenging. Compared to probability distributions, the interval information of uncertainties can be more easily obtained. Thus, multidisciplinary robust design optimization (MRDO) under interval uncertainty has been widely investigated. To overcome the inefficiency of existing methods for solving MRDO, this paper proposes an improved collaboration pursuing method (ICPM). In this method, the collaboration model (CM) is utilized to filter the samples that satisfy the coupled state equations in system analysis (SA) or multidisciplinary analysis (MDA). Then, a robustness discrepancy model (RDM) is developed to efficiently select candidate samples that meet the robustness requirements. Next, the mode pursuing sampling (MPS) method is utilized as a global optimizer to drive the optimization process and identify the robust optimum. Finally, a mathematical example and two engineering examples are utilized to evaluate the feasibility and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.