Abstract
Abstract The Geostationary Operational Environmental Satellite (GOES) imager provides observations that are of high spatial and temporal resolution and can be applied for effectively monitoring and nowcasting severe weather events. In this study, improved quantitative precipitation forecasts (QPFs) for three coastal storms over the northern Gulf of Mexico and the East Coast is demonstrated by assimilating GOES-11 and GOES-12 imager radiances into the Weather Research and Forecasting (WRF) model. Both the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis system and the Community Radiative Transfer Model (CRTM) are utilized to ingest GOES IR clear-sky data. Assimilation of GOES imager radiances during a 6–12-h time window prior to convective initiation and/or development could significantly improve the precipitation forecasts near the coast of the northern Gulf of Mexico. The 3-h accumulative precipitation threat scores are increased by about 20% after 6 h of model forecasts and more than 50% after 18–24 h of model forecasts. A detailed diagnosis of analysis fields and model forecast fields is carried out for one of the three convective precipitation events included in this study. It is shown that the assimilation of GOES data in regions of no or little clouds improved the model description of an upstream midlatitude trough and a subtropical high located in the south of the convection. The GOES observations located in the western part of land region covered by GOES within the latitude zone of 18°–37°N near 100°W contributed to a better forecast of the position of the eastward-propagating trough, while GOES observations over the Gulf of Mexico increased the amount of water vapor advection from the south into the convective region by the wind associated with the subtropical high. In the past, GOES imager radiances were not directly used in the GSI system. This study highlights the importance of satellite imagery information observed in the preconvective environment for improved cloud and precipitation forecasts. The developed data assimilation technique will prepare the NWP user community for accelerated use of advanced satellite data from the GOES-R series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Monthly Weather Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.