Abstract

Post-synthetic functionalization or modification has been regarded as a promising strategy to treat surfaces of adsorbents for their applications in targeted adsorption and separation processes. In this work, a novel microporous adsorbent for carbon capturing was developed via functionalization of zeolitic imidazolate frame-work-91 (ZIF-91) to generate a hard/hard (metal-oxygen) structure named as lithium-modified ZIF-91 (ZIF-91-OLi compound). To this purpose, the ZIF-91 compound as an intermediate product was achieved by reduction of ZIF-90 in the presence of NaBH4 as a good reducing agent. Afterwards, acidic hydrogen atoms in the hydroxyl groups of ZIF-91 were exchanged with lithium cations via reaction of n-BuLi compound as an organo lithium agent through an appropriate procedure. In particular, the as-synthesized ZIF-91-OLi operated as an excellent electron-rich center for CO2 adsorption through trapping the positive carbon centers in the CO2 molecule. DFT calculations revealed that the presence of lithium over the surface of ZIF-91-OLi adsorbent plays an effective role in double enhancement of CO2 storage via creating a strong negative charge center at the oxygen atoms of the imidazolate linker as a result of the lithium/hydrogen exchange system. Finally, the selectivity of CO2/N2 was investigated at different temperatures, revealing the ZIF-91-OLi as a selective adsorbent for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.