Abstract
Solid foams are porous, monolithic materials with higher specific surface areas than the random packings that are commonly used in amine-based CO2 capture processes. In this work, the hydrodynamic characteristics (e.g., pressure drop, flooding point, and liquid holdup) and CO2 absorption performance of α-Al2O3 ceramic foam packings of different porosities were investigated experimentally in a gas–liquid countercurrent column. With a 30 wt % diglycolamine (DGA) solvent as the CO2 absorbent, the foams allowed higher flow rates of gas and liquid than a random packing before undesirable flooding was reached. Ceramic foams with lower porosities have larger operating capacities than those with higher porosities. A parametric study of a one-dimensional flow model was performed by investigating the effects of gas velocity, liquid velocity, and CO2 solvent loading on the CO2 removal performance. Lower gas velocities and higher liquid velocities increased the CO2 removal efficiency. The CO2 removal efficiency decre...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.