Abstract

Accurate cloud detection is a requirement of many geophysical applications that use visible and infrared satellite data (e.g. cloud climatologies, multichannel sea surface temperature (MCSST)). Unfortunately, a significant source of residual error in such satellite-based products is undetected cloud. Here, a new, computationally efficient cloud detection procedure for both daytime and night-time Advanced Very High Resolution Radiometer (AVHRR) data is developed. It differs substantially from our prior related work. First, a new clustering procedure is used, which produces more homogeneous and distinct clusters than those produced by either our previous work or the ISODATA algorithm of Ball and Hall. Second, the input information vector is reduced in size, incorporates both radiance and spatial components and each component is normalized. These changes improve the clustering/subsequent classification, tend to decrease execution time, and simplify post-processing of the classified (cloud, clear ocean) data ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.