Abstract
With the development of the spatial data mining technologies the researcher are grouping towards using the same in various domains. Once such domain is the high resolution images of the urban land. The process includes the collection of segmented image for the various scenes and the classification technique is used to check the probability that segment belongs to the same urban cover along with the class assignment. The classifier previously make use of the random forest tree classification algorithm to develop the network model for semantic web and attribute selection process. However the attribute selection process accuracy can be further improved using the Hoeffding decision tree algorithm where the node split is controlled through the error rate. It’s an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time. The leaf predicting strategy is optimized for the Hoeffding tree through Naive Bayes adaptive process for predicting the land cover with high accuracy rate. The result were simluated using weka as an open source software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.