Abstract

PurposeDetection of breast cancer at early stage increases patient’s survival. Mass spectrometry-based protein analysis of serum samples is a promising approach to obtain biomarker profiles for early detection. A combination of commonly applied solid-phase extraction procedures for clean-up may increase the number of detectable peptides and proteins. In this study, we have evaluated whether the classification performance of breast cancer profiles improves by using two serum workup procedures.MethodsSerum samples from 105 breast cancer patients and 202 healthy volunteers were processed according to a standardized protocol implemented on a high-end liquid-handling robot. Peptide and protein enrichments were carried out using weak-cation exchange (WCX) and reversed-phase (RP) C18 magnetic beads. Profiles were acquired on a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. In this way, two different biomarker profiles were obtained for each serum sample, yielding a WCX- and RPC18-dataset.ResultsThe profiles were statistically evaluated with double cross-validation. Classification results of WCX- and RPC18-datasets were determined for each set separately and for the combination of both sets. Sensitivity and specificity were 82 and 87 % (WCX) and 73 and 93 % (RPC18) for the individual workup procedures. These values increased up to 84 and 95 %, respectively, upon combining the data.ConclusionIt was found that MALDI-TOF peptide and protein profiles can be used for classification of breast cancer with high sensitivity and specificity. The classification performance even improved when two workup procedures were applied, since these provide a greater number of features (proteins).Electronic supplementary materialThe online version of this article (doi:10.1007/s00432-012-1273-4) contains supplementary material, which is available to authorized users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.