Abstract

Transition metal dichalcogenides (TMDs) have received significant attention because of their potential for replacing or modifying the existing charge transporting materials in organic solar cells (OSCs) with their unique crystalline structure and desirable electrical properties. Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been considered as the representative hole transporting material owing to its notable optical transmittance, electrical conductivity, and solution-processability. In this study, we provide a facile method to introduce a liquid-phase exfoliated TMD, tungsten diselenide (WSe2), as the device performance enhancer in OSCs. Implementation of WSe2 into PEDOT:PSS without significant change to the surface morphology mediates effective charge transport in the completed device. The phase separation of PEDOT and PSS induced by the WSe2 provides a conductivity enhancement in the modified hole transport layer (HTL), which contributes to the increase of hole mobility and decrease of charge recombination loss in the OSCs, resulting in the improvement of power conversion efficiency from 7.3% to 8.5% for pristine and modified HTL devices, respectively. These results provide a simple strategy for the enhancement of device performance in OSCs, demonstrating their promising potential in the application of TMDs for next-generation energy harvesting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.