Abstract

Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)4. We show that Pip–PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in ∼3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)4-PNADMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call