Abstract
A platinum/reduced graphene oxide (Pt/rGO) nanocomposite acting as a counter electrode (CE) was fabricated using a chemical bath deposition method for In2O3-based dye-sensitized solar cell (DSSC) via sol-gel technique. The report analyzes the morphological and electrochemical impedance spectroscopy of the annealing Pt/rGO films at 350, 400, and 450 °C. Micrograph images obtained from field emission scanning electron microscopy demonstrated the annealed films are highly porous. The energy-dispersive X-ray results show that the carbon atoms were homogeneously distributed on the film annealed at 400 °C. A good photovoltaic performance was exhibited with high photocurrent density of 8.1 mA cm−2 and power conversion efficiency (η) of 1.68 % at the Pt/rGO CE annealed at 400 °C. The employed electrochemical impedance spectroscopy analysis quantifies that the Pt/rGO films annealed at 400 °C provide more efficient charge transfer with the lowest effective recombination rate and high electron life time, hence improving the performance of Pt/rGO CE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.