Abstract

To estimate the parameters of the mixed additive and multiplicative (MAM) random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array, we introduce a derivative-free cat swarm optimization for parameter estimation. We embed the Powell method, which uses conjugate direction acceleration and does not need to derive the objective function, into the original cat swarm optimization to accelerate its convergence speed and search accuracy. We use the ordinary least squares, weighted least squares, original cat swarm optimization, particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity, respectively. The experimental results show that the improved cat swarm optimization has faster convergence speed, higher search accuracy, and better stability than the original cat swarm optimization and the particle swarm algorithm. At the same time, the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations. The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call