Abstract
All-perovskite tandem solar cells (TSCs) hold great promise in terms of ultrahigh efficiency, low manufacturing cost, and flexibility, stepping forward to the next-generation photovoltaics. However, their further development is hampered by the relatively low performance of low-bandgap (LBG) tin (Sn)-lead (Pb) perovskite solar cells (PSCs). Improving the carrier management, including suppressing trap-assisted non-radiative recombination and promoting carrier transfer, is of great significance to enhance the performance of Sn-Pb PSCs. Herein, a carrier management strategy is reported for using cysteine hydrochloride (CysHCl) simultaneously as a bulky passivator and a surface anchoring agent for Sn-Pb perovskite. CysHCl processing effectively reduces trap density and suppresses non-radiative recombination, enabling the growth of high-quality Sn-Pb perovskite with greatly improved carrier diffusion length of >8µm. Furthermore, the electron transfer at the perovskite/C60 interface is accelerated due to the formation of surface dipoles and favorable energy band bending. As a result, these advances enable the demonstration of champion efficiency of 22.15% for CysHCl-processed LBG Sn-Pb PSCs with remarkable enhancement in both open-circuit voltage and fill factor. When paired with a wide-bandgap (WBG) perovskite subcell, a certified 25.7%-efficient all-perovskite monolithic tandem device is further demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.