Abstract

PurposeTo develop and validate a new myocardial T1 mapping sequence (MOSHA) which is based on a combination of the modified Look-Locker inversion recovery (MOLLI) and the saturation recovery single-shot acquisition (SASHA) sequences. MethodsPrior studies have shown that myocardial T1 mapping by SASHA is more accurate but less precise than MOLLI. A new myocardial T1 mapping technique (MOSHA) based on single-shot acquisitions is developed by combining the MOLLI and SASHA sequences. Phantom and patient studies on 15 patients (9 males, median age 21 years) were performed to validate and compare MOSHA with the MOLLI and SASHA sequences in terms of accuracy and precision. ResultsIn the phantom study, MOSHA was as accurate as SASHA (P-value = 0.88) and as precise as MOLLI (P-value = 0.59). Similar trends were observed in the patient study. Compared to SASHA, MOSHA accuracy was comparable for blood pre-contrast (P-value≥0.10) and post-contrast (P-value≥0.70), and for myocardium pre-contrast (P-value = 0.70) and post-contrast (P-value = 0.09). Compared to MOLLI, MOSHA precision was lower for blood pre-contrast (P-value<0.01) and higher for blood post-contrast (P-value≤0.01), and comparable for myocardium pre-contrast (P-value = 0.24) and post-contrast (P-value = 0.07). Synthetic Extracellular volume fraction (ECV) calculated by MOSHA was more precise than those of SASHA and MOLLI (P-value≤0.01). ConclusionIn phantom studies and patients, MOSHA has comparable accuracy as SASHA and nearly similar precision as MOLLI for T1 mapping. Precision of MOSHA was better than MOLLI and SASHA in synthetic ECV measurements. Therefore, it may be a superior choice in clinical practice for a precise and accurate calculation of T1 and ECV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call